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ABSTRACT

Results are presented to describe the laminar flow patterns around a prolate
spheroid at angies of attack of 1, 2, 3, and 30 degrees and complement those
obtained previously at & degrees. They were obtained by solving three-
dimensional boundary-layer equations with a combination of standard and
characteristic box methods and with a stabtlity criterton to ensure numerical
accuracy. Emphasis 1s placed on the nature of separation which, in agreement
with experiment but contrary to some theoretical claims, is shown to be open

for all angles of attack and to be coincident with a particular skin frictton
line.
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1.0 INTRODUCTION

Prediction of separation patterns on three-dimensional bodtes is important in
engineering practice and a complete solutton to the problem requires either the
solution of the Navier-Stokes equations or of inviscid flow and boundary-layer
equations with interaction between the two. The calculations are difficult and
remain to be performed satisfactorily. In the meantime, attention has been
directed to the solution of model problems where the external velocity distri-
bution has been determined from an analytic expression based on a simple body
shape with three-dimensional boundary-layer equations solved numerically. It
should not be expected that the measurements of, for example, Han and Patel
(1975), Meier and Kreplin (1980), Meler, Kreplin and vVollmers (1983), and
Costis, Polen, Hoang and Telionis (1988), will agree in detail with the solu-
tions of the model problem but the latter allows the development of essential
numerical techniques which pave the way for the more complete solution referred
to above. It can be expected that the model problem will emphasize the sensi-
tivity of calculation methods in the region of separation and allow the nature
of flow separation to be identified; it is this aspect which is the major con-
sideration of this report. Reference should be made to the contribution of
Willtams (1977) for a discussion of the various definitions of boundary-layer
separation in three-dimensional flows.

An important aspect of the subject was considered by Lighthiil (1963) who dis-
cussed the nature of separation in three-dimensional steady laminar flows. He
postulated that three-dimensional separation corresponds to a skin-fricticn
1ine which is at odds with the earlier suggestion of Maskell (1955) who pro-
posed that separation is an envelope of 1imiting streamiines. The argument has
continued 1n a serles of reports where, for example, Wang (1975) and Cebect et
al. (1981) have sided with Maskell and more recently Cebect and Su (1988)
reported calculations which are consistent with Lightht11's view. These recent
calculations were performed with a numerical scheme which involved systematic
adjustment of the grid according to a numerical stability criterion which had
been subjected to careful evaluation in relation to an extensive range of
steady and unsteady flow problems. They corresponded to the laminar flow
around a prolate spheroid of thickness t = 1/4 at 6 degrees angle of attack
and, as shown in Fig. 1, there is a region of positive crossflow, followed by
a substantial region of negative crossflow, a separation line and two terminal

0247h 1




180

150!~
120+

3 ideg)
90—

0~

| . L \

E)llO ~05 Q.0 0.2% ¢ 0.5 07% 10

Figure 1. Flow regions for a = 6°, according to Cebeci and Su (1988).

1ines beyond which solutions of the boundary-layer equations could not be
obtained. Of particular note was the separation l1ine which did not extend
from the leeward to the windward side implying open separation and is in
contrast to the earlier findings of Wang (1975) and Cebec) et al. (1981).

The nature of the problem may be explained in terms of the comprehensive
examination of the tnfluence of angle of attack by Wang (1976) who presented a
figqure which showed the sequence of separation patterns on the prolate spheroid
for a range of angles of attack. [t showed that (Fig. 2a) the flow separates
at a fixed parallel for zero Incidence, that a small increase of incidence

(a = 3°) tilts the separation line siightly and that separation is preceded

by a small region of weak reversal of the circumferential flow (Fig. 2b). As
the incidence angle further increases (a = 6°, Fig. 2c), the leeside separa-
tion point moves rearward rather than forward so that the separation line is
bent as shown in an enlarged view (Fig. 3a). The upper branch AC inclines
rearward, whereas the lower branch CD inclines forward. Meanwhile, the rever-
sal of the circumferential flow starts ahead of the midbody on the leeside
(see Fig. 2c). At higher incidence, the separation 1ine breaks so that the
lower branch CD extends forward to become an open separation 1ine, as shown in
F1g. 2d and enlarged in Fig. 3b. The change from a closed separation at low
incidence to an open separation at higher incidence thus evolves gradually and
it ts difficult to identify a particular incidence at which this change takes

0247h 2
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Figure 2. ?equence of flow separation on a prolate spheroid, according to Wang
1976).

CLOSED
SEPARATION
LINE

SEPARATION
LINE

(a) NEAR BREAKUP (b) AFTER BREAKUP

Figure 3. Initiation of open separation on a prolate spheroid a a = 6°,
according to Wang (1976).

place. Even for 6° incidence (Fig. 2c and Fig. 3a), 1t 1s difficult to say
whether the separation 1ine 1s closed 1n the sectton BC.

The description of the previous paragraph is in some contrast to the measure-
ments of Meter et al. (1983) and, even though exact concurrence with calcula-
tions based on specified pressure distributions is not possible, agreement with
general features of the flow might be expected. Figure 4 shows the separation

0247h 3
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Figure 4. Separation )lines derived from o)l flow patterns of laminar boundary
layers, according to Meler et al. (1983).

NN

1ine detected by Meiler et al. from their observation aof the bifurcation of ot}
flow patterns and it is evident that the separation is open for all angles of
attack greater than zero and in general) agreement with the calculations of
Cebeci and Su at 6 degrees. A similar conclusion was reached by Costis et al.
who used dyes and particles to visualize the flow close to the surface of a
prolate spheroid of fineness ratio four, rather than a ratio of six as in the
resylts of Wang, Meler et al. and Cebecl and Su. The visualization patterns
show that their separation was open for angles of attack from & to 30 degrees
and ltess readily defined at 3 degrees.

Thus the purpose of the present report s to present calculations performed
with the procedure used by Cebect and Su (1988) and to determine f the dif-
ferences between their results at a = 6° ‘and the description of the previous
paragraph also exist at ather angles of incidence. At the same time, the
results are examined in terms of the postulations of Lighthill and Maskell to
determine the nature of the separation line. To achieve these purposes,
results are presented for incidence angles of 1, 2, 3, and 30 degrees.

0247h 4




The following section provides a brief description of the method used to solve
the three-dimensional boundary-layer equations and emphasizes the special pre-
cautions taken in the vicinity of separation. The results are presented in
Section 3, which discusses them in the context of the previous studies referred
to above. The report ends with a summary of the more important conclusions.

0247n 5




2.0 CALCULATION METHOD

The calculation method used by Cebect and Su (1988) considers the conservation
equations for mass and for x- and 8-momentum in curvilinear orthogonal
coordinates and obtains their solution by a finite-difference method based on
Keller's box scheme for a prolate spheroid defined by

(3 + D = (1)

subject to an external velocity distribution given by the inviscid flow theory.
To avoid the singularity at the nose § (= x/3) = -1, in a region -1 < § < Eo’
they used the procedure of Cebeci et al. (1980) which employs transformations
that allow the boundary-layer equattons to be solved without numerical diffi-
culttes. For § > EO. they used two different versions of the box scheme
depending on the complexity of the flowfield. In regions of positive crossflow
velocity, they used the standard-box scheme and the characteristic box scheme
in regions of negative crossflow velocity.

The accuracy of the calculations perfcrmed with the standard-box method is well
established and that of the characteristic-box method was examined by Cebect
and Su for regions of positive crossflow and was shown to be equally satis-
factorv. In regions of negative crossflow and in the vicinity of the separa-
tion line, however, tne results depended upon the finite-difference grid tn a
way which necessitated an intelligent procedure for grid spacing. To discuss
this point further, let us consider the net shown in Fig. 5 at a distance y
from the surface and assume that the solutions with the characteristic box
scheme originate on the leeward line of symmetry and march towards the wind-
ward 1ine of symmetry. The symbol x denotes the location where the solution
is known and the symbol o denotes the location where the solution is to be
found. The backward characteristic from point P is in the local streamline
direction and intersects the 51_1 Tine at £ when there 1s a positive cross-
flow velocity and at F when the crossflow velocity is negative. Since the
characteristic box computes the region EFP, which is known as the domain of
dependence of point P, 1t ensures that the domain of stable computations can
be determined a priori and this is achieved by determining the ratio ﬁ(EA81/Ae)
which 1s also equal to (u/u)(h1/h2)(AE/A9) and requiring that it remains small
during the calculations: Cebeci and Su (1988) refer to this requirement as the
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fFigure 5. Finite-difference notation for the characteristic-box scheme: o,
unknowns, x knhown.

stabtlity criterion of the characteristic box scheme since it characterizes
the flow angle and, therefore, the grid-interval required to ensure that the
zones of dependence and influences are properly represented.
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3.0 RESULTS

As in the study of Cebeci and Su (1988), the calculations for a given angle of
attack were performed by identifying three separate regions on the body. In
the region upstream of the iine of zero Ce (Region A), ail u- and w-velocities
are positive; in the region between this 1?ne and the two terminal lines 1 and
2 (Region B), u is positive and w is negative near the surface; and in the
region downstream and between the two terminal 1ines (Region C) u and w are
negative near the surface and positive away from the surface. The numerical
calculations in Region A made use of the reqular box scheme with comparatively
large step sizes in the streamwise direction § and those in Reqion B made

use of the characteristic box scheme with a great deal of attention was paid

to the chaice of the net in the circumferential and streamwise directions.
Again, three subregions were identified to perform the calculations. The

first subregion started at EA where the w-velocity became negative and

extended to EP where the streamwise wall shear (au/ay)u first vanished. The
second and third subregions began at the first separattion point Ep and were
bounded by the leeward line of symmetry, the terminal line 1, the windward line
of symmetry and terminal line 2.

Following the routine calculations in Region A, the calculations in Region B
were started on the windward 1ine of symmetry and continued towards the leeward
1ine of symmetry with the standard box scheme where w 1s positive and the
characteristic box scheme where w is negative. The step lengths in the circum-
ferenttal and streamwise directions were chosen to satisfy the stability param-
eter 8. A typical streamwise grid for uniform circumferential grid of A8 = 2.5
1s shown in Table 1 for a = 1, 2 and 3 degrees.

The previous study of Cebect and Su (1988) for a = 6° showed that the choice

of step lengths in region B was very important to the accuracy and the stabil-
ity of the solutions. If they were not chosen properly, the solutions oscil-
lated and sometimes led to breakdown of the calculations. The severity of the
oscillations depended on the magnitude of the flow reversal and, when i1t was
small, so were the oscillations. 1In regions close to the flow separation line,
however, the solutions became more sensitive to the criterion set by the
B-parameter and required that the value of B remained relatively small. A
precise tdentification of the first (sp.ep) location on the body where

0247h 8
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Table 1. Axlal step lengths for 48 = 2.5 degrees

a=1° a = 2° a = 3°

£ ag x 102 11 A x 10° £ AE x 10°
0.0000-0.51 1.0 0.0000-0.430 1.0 0.000-0.430 1.0
0.5100-0.60 0.5 0.4300-0.550 0.5 0.430-0.500 0.5
0.6000-0.61 0.25 0.5500-0.590 0.25 0.500-0.545  0.25
0.6100-0.62 0.125 0.5500-0.606 0.10 0.545-0.560  0.10
0.6200-0.625 0.1 0.6060-0.608 0.05 0.560-0.572  0.05
0.6250-0.630  0.05 0.6080-0.6095  0.025 0.572-0.586  0.025
0.6300-0.6355  0.025 0.6095-0.6110 0.0 0.586-0.611  0.05
0.6355-0.6380 0.0 0.6110-0.6120  0.025 0.611-0.640 0.1
0.6380-0.6410  0.025 0.6120-0.6140  0.05 £ > 0.640 0.125
0.6410-0.6440  0.05 0.6140-0.630 0.10
0.6440-0.6500 0.1 £ > 0.630 0.25
0.6500-0.6550 0.125

£ > 0.6550 0.25

the streamwise wall shear fH vanished and where g,, was negative was
very important in the calculations since that point corresponded to the

definition of the open flow separation 1ine on the prolate spheroid.

In view of the experience gained in computing a = 6° case, our studies were
conducted with step lengths chosen to satisfy the stability parameter B (see
Table 1) and the solutions were examined to ensure that they were smooth and
free of oscillations. The grids used to compute the flow at a = 1, 2 and 3
degrees were essentially the same. For this reason, the details of the
procedure are discussed for a = 3 and the remaining two will be summarized.

For a = 3°, the flow reversal in the circumferential flow direction takes

place at EA = 0.08 and the boundary of the line Ce = 0 varies with E as shown
in Fig. 6. The first §-location where the streamu?se wall shear parameter
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Figure 6. Flow regions for a = 3°.
fH vanishes occurs at § = 0.57375, ep = 100°. Figure 7 shows the vartation

L}
of fw with § and 8, for several values of 8 and §, and we note that f:
vanishes at EN = 0.765 on the windward line of symmetry (8 = 0), and moves

upstream with increasing 8 until 100° where § = 0.57375. For values of O greater
L]
than © = 100°, the §-location where fw is zero increases to § = 0.595 for ©

= 140° and to § = 0.617 for © = 180°. The varlation of f; with @ for given
§-locations on the body is shown in Fig. 7b which indicates that, for values of

E < 0.57375, the streamwise wall shear decreases monotonically with increas-
ing 6 up to a certain E-location after which it begins to increase. A

sharp decrease in its magnitude takes place at § = 0.57375 for 6 = 100° where,
after a steep dec:ease in f;, 1t shows a rather sharp increase. We note from
the behavior of fw at th:s angle of attack, and those at lower angles, that
this rapid decrease of fw at a certain § and 6 values s much less than those
computed at higher angles of attack, i.e. a = 6°. As a result, the calcula-
tions were easter to perform at the lower angles.

We see from Fig. 7, that the computed wall shear values are smooth and finite
and free of oscillations. The results of Fig. 8 support this conclusion in
that the magnitude of the stability parameter B is shown to be small in the
circumferential direction at various E-locattons on the body.

0247n 10
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Figure 7. variation of the streamwise wall shear f; with (a) § and (b)
0 at different values of 6 and §, respectively, for a = 3°.
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Figure 8. variation of the stability parameter B with 8 at general values
of § for a = 3°.

Flgu:e 9 shows the approximate direction field of the 1imiting streamlines
gu/fw (Indicated by dashed 1ines) and the integrated trajectories (indicated
by solid 1ines) in the 6 - E plane. Figure 10 shows the 1imiting stream-
l1ines obtained by integrating the direction field of the wall shear h]g:/hsz
as a function of § and 6 plotted on the bady. We note that the 1imiting stream-
Tines which were parallel to the f-direction at a = 0 are now deflected from
the §-direction due to the effect of the pressure gradient in the 9-direction.
As in the case of a = 6°, the calculations lead to definitions of terminal
Tines 1 and 2 which correspond to the breakdown of the calculations due to the
singular nature of the boundary-layer equations. In these regtlons, the slopes
of the 1imiting streamlines change rapidly and approach +90° as the solutions
break down. It is clear from this figure and from Fig. 6, that“the first
pg\nt at § = 0.57375, @ = 100°, which corresponds to negative 9y and zero

fw can be regarded (as in the case of a = 6°) as the beginning of the separa-
tion line for a = 3° and can be used to identify the skin-friction 1ine as the

separation line in three-dimensional flows. The behavior of the skin-friction
Tines on both stdes of the separation line 1s again similar to that for a = 6°
discussed by Cebeci and Su (1988).

Figures 11 to 13 show the results for a = 2° and 1° and the first flow
reversal 1n the circumferential flow direction takes place at EA = 0.17 and

0247h 12
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Figure 9. Approximate direction field of the 1imiting streamlines (dashed
1ines) and integrated trajectories (solid lines). The long dashed

11ine SP denotes terminal line 1, PN terminal 1ine 2, and the solid
1ine PN the separation line.
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Figure 10. Behavior of the 1imiting streamlines on the body for a = 3°.
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Figure 11. Flow regions for @ = 2°. §g and fy correspond to the separation
Tocations on the leeward and windward sides, respectively.
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Figure 12. Flow regions for a = 1°. Eg and Ey correspond to the separation
locations on the leeward and windward sides, respectively.
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Figure 13. Vartation of the streamwise wall shear f; with § at different
values of 8 for a = 1°.

at EA = 0.290, respectively. The first E-location where f: vanishes occurs at
EP = 0.6098, eP = 130° for a = 2°, and at EP = 0.6374, ep = 175° for a = 1°. As
for a = 3°, the figures define two terminal lines and a separation line which

is open and show that the beginning of the open separation 1ine approaches the
separation location on the leeward line of symmetry with increasing angle with
open separation closed at a=0. Figure 13 shows the vartation of the stream-
wise wall shear fH with 8 at vartous §-locations on the body for a = 1° and
that, as for a = 3° and the solutions are free of oscillations.

Figure 14 shows the open separation and cf = 0 Yines where the first flow
reversal in the circumferential directzon ?akes place at § = -0.92 on the
leeward plane of symmetry, and where fu vanishes at § = -0.8453 at 6 = 141.5°
for a = 30°. The calculations for this angle of attack were more difficult
than those for a = 6° and it was necessary to use a nonuniform grid in both

£ and 8-directions, as shown 1n Tables 2 and 3. It is evident from Fig.

15 that the magnitude of B {s relatively small for values of § < -0.875

and begins to increase sharply thereafter. For E = -0.8453, the magnitude

of B reaches 0.57 at © = 141.5° and it was possible calculate up to § =

-0.50 in the second subregion. Overshoots in the velocity profiles (both in v
and w) began to occur at § = -0.50 and became progressively worse. Refining
the net did not help, and the calculations became very difficult to perform

0247h 15
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Figure 15. variation of the stability parameter B with 8 at several values

of £ for a = 30°,

with increasing § where the circumferential edge velocity became bigger and
]

the boundary-layer thicker. Figure 16 shows the variations of fu with § and
8, for several values of 0 and §, respectively, and indicates trends similar

L}
to those observed with a = 6°. We note from Fig. 16a that fw vanishes at

N
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0°

30°
100°
110°
139°
144°
160°
166°
170°

Table 2.

AE x 10

o O O O o

Qo o o o o

Axial Step Length for a = 30°

2

.25
.10
.05
.04
.03
.02
.01
.02
10
.20

. Circumferential Step Lengths for a = 30°

11
<-0.9
.9000 - -0.8640
.8640 - -0.8520
.8520 - -0.8500
.8500 - -0.8470
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Figure 16. Variation of the streamwise wall shear with (a) € and (b) 9 at
different values of 6 and §, respectively, for a = 30°.
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leeward side. The first interior point uhe:e f: vanishes occurs at Ep =
-0.8453 at OA = 141.5°. The vartation of fH with 8 for a given §-location,
see Fig. 16b, shows that, the wall shear undergoes a drastic change near the
region of flow separation, decreasing and increasing sharply at 8 = 141.5°

and this explains the need to employ a very fine grid in this region. In both
figures, the behavior of f: ¥s smooth and free of oscillations and

indicates that the results are accurate and reliable.

Figure 17 shows the approximate direction field of the l1imiting streamlines
(Yndicated by dashed lines), the integrated streamlines (indicated by solid
iines), the Ce = 0 1ine, separation line and terminal lines 1 and 2. There is
clearly no prog1em in computing the flow in the third subregion after flow
separation occurs at § = -0.8453 because the negative cross-flow region is

very small. Consistent with the results for a = 1 to 3° and 6°, there s a
separation 1ine between the two lines representing Cg = 0 and the terminal
Tine 1. The approximate streamlines were obtained by integrating g&/f; as a
function of § and 0 with integration starting at £ = -0.860 and their

behavior 1s similar to those for a = 6°.

The separation lines of Fig. 18 may be compared with those of Figs. 2 to 4 with
the clear implicaton that the present results agree well with the measurements
of Meler et al. and, in the main, with those of Costis et al. The separation
ts open for all angles of attack greater than zero, at least for the prolate
spheroid of fineness ratio six. It should be noted that the side view pre-
sented on Fig. 18 shows a small distance of open separation for angles of
attack of 1, 2 and 3 degrees so that great care s likely to be required in

the interpretation of near-surface visualization, as in the case of Costis et
al.
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4.0 CONCLUDING REMARKS

The results of the preceeding section confirm that separation is open for all
angles of attack considered and described by a line which corresponds to a
skin-friction line, as suggested by Lighthill. The lines of zero ce occur
upstream of separation and terminal lTines are identified beyond uhicg the
boundary-layer equations cannot be solved with a prescribed pressure distri-
bution. It 1s evident that great care is required to ensure numerical accuracy
and that this has been achleved by a combination of the standard and charac-
teristic box methods with an essential stability criterion.
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